
Interactive Visualization of Agent-Based Pandemic
Simulation in Web Browser

Michal Mrozek
Warsaw Univ. of Techn.

Warsaw, Poland
michal.mrozek2.stud@pw.edu.pl

Mikhail Sirenko
Delft Univ. of Techn.

Delft, the Netherlands
m.sirenko@tudelft.nl

Anna Foks-Ryznar
Space Research Centre (CBK PAN)

Warsaw, Poland
afoks@cbk.waw.pl

Bartosz Sawicki
Warsaw Univ. of Techn.

Warsaw, Poland
bartosz.sawicki@pw.edu.pl

Abstract—The paper presents a web-based system designed to
visualize a simulation of ca. 500,000 residents of a city during the
COVID-19 outbreak. Each agent’s infection status and mobility
are presented in the time scale. The main effort was to ensure
simplicity from the user’s perspective and smooth operation on
various client devices. The full range of software engineering
problems is discussed, from efficient data storage to optimization
of visualization methods.

Index Terms—agent-based model, web application, covid-19
outbreak, big data

I. INTRODUCTION

Data presentation is one of the main challenges of the big
data era. Robust information systems collect and model real-
world phenomena. However, if humans make decisions based
on this, the data must be easily accessible and understand-
able. Web browsers are a common platform for IT systems
to communicate with users. At the same time, web-based
applications require meticulous design due to their multi-level
and distributed nature.

The COVID-19 pandemic was a considerable threat that
stimulated many scientific teams into action. One trend was
geographically accurate modelling of the spread of the virus.
An issue naturally associated with this type of problem is the
presentation of the model results. It could be classified as a
computer science challenge in software engineering.

A simple solution to this problem has been presented by
the system CoronaModel developed by the University of
Hohenheim [1]. It is also based on simulation data and allows
changing the model’s parameters in real-time. Since the data
set includes less than 500 agents, it is possible to download
all data at the start of the application. The map is static, i.e., it
does not support zooming or panning. The authors created the
visualization by directly drawing on an HTML canvas element.

A comprehensive list of 121 similar applications that visu-
alize data from the COVID-19 pandemic has been created by
Bernasconi and Grandi [2]. Their work reveals that none of
the systems supports the one person (agent) level of detail.
The aggregated data for provinces, states or entire countries
are presented and animated.

This paper describes research for a system that interactively
visualizes a time-varying infection situation at the level of
individual virtual persons (agents). The developed open-source

system has unique features that allow for animating large
amounts of data in a web browser.

II. AGENT-BASED MODEL

Agent-based modelling (ABM) is a simulation modelling
paradigm along with system dynamics (SD) and discrete-event
simulation (DEVS). In its current form, ABM has originated
from the work on segregation [3]. From there, it has spread
across various disciplines, including epidemiology [4]. At
the core of ABM lies the concept of emergent phenomenon
(e.g. virus spread) generated from the interaction-behaviour of
individual agents (e.g. people). Such a focus allowed scholars
to take ABM on board for modelling the COVID-19 spread
(see, e.g. [5]). The system of interest, in this case, can
be a city, and agents represent its residents. Besides, such
models typically have other city subsystems: locations that
residents visit (schools, supermarkets), activities that they do
(work, leisure), transport that they use (buses, trams) and
epidemiology status (SEIR - Susceptible, Exposed, Infected,
Recovered).

For this study, we use the HERoS model [6], which is an
extension of the influenza model in Beijing [7]. As the case
study, we select the city of The Hague, the Netherlands. We
create a synthetic population of the city of 540,000 residents-
agents from aggregated open data [8]. The resulting agents
have a set of key attributes such as a home address, age,
household size and occupation. Agent’s activities depend on
their social role. The Time Use Survey reports the average
duration and frequency of different activities performed by
an average Dutch person across a week. Based on this, we
generate 10 schedules, one for each social group, for each day
of the week. These schedules are combinations of essential
activities, e.g. sleep, work, shopping, going out etc. Agent
executes activities at the places of interest (POI) within data
from OpenStreetMap. Depending on the activity, an agent
visits one of 200,000 locations on a map which fall under
different categories such as home, education, shopping, restau-
rants etc. To simulate the disease we use a modified SEIR-
like model that accounts for symptomatic and asymptomatic
transmission. The simulation model works on an open-source
engine DSOL [9]. Under the hood, it uses a mix of DEVS
and ABM simulation modelling paradigms. Such a mix allows
agents to execute activities only at a given time and not

20
22

 2
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
ta

tio
na

l P
ro

bl
em

s o
f E

le
ct

ric
al

 E
ng

in
ee

rin
g

(C
PE

E)
 |

 9
79

-8
-3

50
3-

96
25

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CP

EE
56

06
0.

20
22

.9
91

96
42

Authorized licensed use limited to: Centrum Badan Kosmicznych PAN. Downloaded on December 22,2022 at 09:23:50 UTC from IEEE Xplore. Restrictions apply.

Michal Gála
979-8-3503-9625-6/22/$31.00 ©2022 IEEE

every time tick. Therefore, the model is much faster than
a conventional ABM: a model run of 2 months with 540,000
agents takes = 1.5 hours on an average laptop.

The key model outcomes are the number of agents in each
of the 12 states: susceptible, exposed, etc. These outcomes
have two dimensions: temporal and spatial. Therefore, we are
interested in visualizing agents over time and on the map.

III. VISUALIZATION REQUIREMENTS

The results of modelling were initially presented on an
interactive web-based dashboard to visualize on graphs and
maps the number and location of active COVID-19 cases,
hospitalizations, intensive care unit admissions, deaths and
recoveries over time. The interactive maps allow the user to
compare the pandemic situation on selected dates and in two
data aggregation modes, i.e. in city districts and neighbor-
hoods. However, only an animated visualization of individual
agents moving around the city can provide an idea of the
magnitude and rate of virus spreading, as well as highlight
the locations where transmission of the virus spreads more
easily.

The interactive animation combined with a web-based ap-
plication provide the public health authorities with an useful
and easy accessible tool to visualize and explore possible
impacts of the outbreak as it can unfold. This approach has
the advantages of giving a dynamic perspective, accessibility
to wide audience and interactivity.

The system, as a web-based GIS application, should meet
the requirements related to effective map design and er-
gonomics of human-system interaction. In this domain the
usability, which is associated with such attributes as effec-
tiveness, efficiency and satisfaction [10], can been achieved
by i.a.:

• simplicity and clarity – a map should be easy to read
in all available scales within the zooming feature, the
interactive elements and settings should be targeted,

• purposefulness – the symbology and colours should be
meaningful and intuitive (consistent with the map mes-
sage).

IV. SYSTEM ARCHITECTURE

Fig. 1. System architecture diagram

The developed system is a classical web application, as
presented on Fig. 1. The solution is hosted on server that has
the Node.js environment and the PostgreSQL database with the
PostGiS extension installed. For ordinary users focused on the
analysis of the simulation model, the application is available

from a web browser and does not require the installation of
any special extensions or software.

The system is built of three main components: front-end,
back-end and database. They share one code repository1.
Since the client application should be run by a browser, the
obvious choice is to use the JavaScript programming language.
However, its basic feature of loose typing generates problems
when developing larger projects. Fortunately there is a super-
set language called TypeScript, which introduces strict code
typing into the syntax.

Visualization is provided by the Three.js library, which
uses a low-level WebGL API specifically designed to display
graphics in a web browser. Due to its popularity and modu-
larity, many extensions have been created to solve common
problems when developing web applications. In the developed
system, maps are powered by MapLibre, a community fork
of the popular and once open-sourced Mapbox, a library that
allows to add aesthetic and functional maps to an application.
The connection between a map and Three.js is achieved with
Three-box plugin, which automatically synchronizes cameras
and converts between geographic and Cartesian coordinate
systems.

Fig. 2. Screenshot of front-end web-based application

As per the requirements, the front-end application has been
designed with the simplest possible user experience in mind.
Fig. 2 presents screenshot of an interactive map limited geo-
graphically to the region where the simulation was performed
is displayed on the whole screen. Zooming in, zooming out,
or changing position is possible using the mouse. The upper
left part presents a legend with the agents’ disease statistics,
which are updated during simulation time. Filtering by the
disease phase can be selected for visualization by clicking on
its label. At the bottom a progress bar allows to change the
current animation time. Four buttons have been placed below,

1The code has been open-sourced and is available at Github:
https://github.com/Michsior14/covis.

Authorized licensed use limited to: Centrum Badan Kosmicznych PAN. Downloaded on December 22,2022 at 09:23:50 UTC from IEEE Xplore. Restrictions apply.

minimize progress bar, open settings, start/stop animation, and
reset animation to initial state.

V. SERVING DATA

The system’s greatest challenge is processing massive
amounts of data. The 180-day simulation tracks the hourly
location and properties of 534,638 agents. As one can easily
count this is over 2 billion 312 million records. The transfer
medium between the HERoS model and the visualization
system is a 350 GB compressed csv file. Working with that
much information at once in a browser is nearly impossible
using today’s technology. No client machine is able to keep
in memory a few hundred gigabytes and additionally animate
the movement of agents on the map. So only the part of the
data needed at a given moment is displayed. Two parameters
are taken to effectively limit the amount of data: location and
simulation time. However, filtering the csv file is also not
among the fastest solutions. Consequently, we need to use
a database filtering data using its latitude and longitude. Two
databases were choosen to be analysed [11], [12] to meet the
requirements: an open source object relational PostgreSQL
with the PostGiS extension and document based NoSQL
datastore MongoDB. Both solutions are scalable and popular
for geospatial data.

0.5 1.35 65 375
0

50
100

200

400

600

800

Searched area [km2]

A
ve

ra
ge

re
sp

on
se

tim
e

[m
s]

PostgreSQL
MongoDB

Fig. 3. Average response time of PostgreSQL and MongoDB

In order to determine which solution performs better in
the described use-case, tests were performed on a portion of
the data consisting of 1 million records. The official Docker
containers of MongoDB version 5.0.6 and PostgreSQL version
14.2 with PostGiS version 3.2.1 were used as the test environ-
ment. The tests were performed after a warm-up phase, which
consisted of executing various queries based on the created
indexes. This ensures that more realistic results are returned,
as filling the cache influences the speed of subsequent queries.
Fig. 3 illustrates the average response times from 10 trials on
both databases. As it can be observed PostgreSQL performed
slightly better for all area sizes. For this reason, and by

deciding to use a separate table to store agent properties (to
reduce overall size of the database), PostgreSQL along with
PostGiS was chosen.

Although it seems to be quite a simple task, importing data
to the database is another a challenge. The data from HERoS
is stored in a CVS file, which needs to be processed during
the migration to fit the database scheme. Additionally, data
even chunked might not fit in the program’s memory if it
hasn’t been enough allocated beforehand. A simple import
using the built-in migrations in TypeORM while handy during
development turned out to be relatively slow. For 1 million
records such a process takes in average 3.5 minutes. To speed
things up an SQL script was created using native PostgreSQL
functions. It first reads the entire file using the COPY FROM
command to a temporary table, and then distributes the records
to target tables changing at the same time the values to the
appropriate format. Only after they are completely moved,
indexes are created and planner is updated to determine the
most efficient way to execute a query in the future. On the
same 1 million data set as before this approach is up 45%
faster and takes in average 2 minutes. However, it also has its
drawbacks, such as it requires 2 times more disk space during
import compared to the first solution because of the temporary
table.

VI. VISUALIZATION PERFORMANCE

Dynamic control of levels of detail were introduced to
manage large scale of date and improve clarity of presen-
tation. Depending on the hardware of the user’s device it
is possible to select low, medium and high level of detail.
The map zoom was correlated with the maximum number of
agents returned by the database. This was implemented using
a modulo function called on the agent ID. Chosen values are
shown in Table I, for instance if the zoom equals 15 and
detail level is set to low then the agent is returned only if
agent ID % 200 = 0. The modulo divisors assigned to the
zoom were defined manually based on number of agents in
the system and observations of phone, tablet and computer
performance while visualizing different city neighborhoods.
This approach ensures that the filtering will be stable and at
subsequent simulation hours we will receive the same units as
long as they are still in the searched area.

TABLE I
DIVISORS FOR MAP ZOOM AND LEVEL OF DETAIL FOR TOTAL NUMBER OF

500,000 AGENTS

Divisor for the detail level
Map zoom level (n) low medium high

n < 12 1500 1000 500
12 ≤ n < 13 600 500 250
13 ≤ n < 15 400 300 150
15 ≤ n < 16 200 100 50

16 ≤ n 5 2 1

It is common in simulation data for different agents to
be in exactly the same geographic location at one time. In
extreme cases, there may even be a few thousand agents in

Authorized licensed use limited to: Centrum Badan Kosmicznych PAN. Downloaded on December 22,2022 at 09:23:50 UTC from IEEE Xplore. Restrictions apply.

the same position. This situation makes it hard to analyze the
results and look for outbreaks. As a remedy, three different
strategies for displaying points on the map has been studied.
The simplest, Normal strategy displays the positions exactly
as declared. The Random strategy adds a random offset to
the coordinates of every point. Unfortunately, by using the
built-in Math.random() function, the agents move to a random
location at each successive simulation hour, even though the
real position does not change. This strongly affects animation
performance, which drops almost by half on average. The
Hashed strategy (selected by default) is an improved version
of the Random strategy. By using the mulberry32 pseudo-
random number algorithm [13] created by T. Ettinger, the
aforementioned effect of agents moving between consecutive
time moments is eliminated.

Fig. 4 shows the distribution of device performance in one
of Hague’s higher density residential areas for different levels
of detail and location strategies.

Low Medium High
0

30

60

100

140

180

220

Details level

Fr
am

es
pe

r
se

co
nd

Normal
Hashed
Random

Fig. 4. Visualization performance in correlation to details level and points
strategy in dense residential area (280 Hz display)

To enable fast animation of points, data are pre-loaded
forward, i.e., n hours are loaded at a time for each hour
of animation. This is particularly important for animation
speeds of less than 1 second. Assuming that the average server
response for an area larger than a square kilometer is about
300ms under ideal conditions then an animation rate of half
a second may begin to stutter. If the speed of 1/4 second would
be chosen, then for sure one would have to wait for loading
the data from the next hour, because the animation would be
executed faster than the data were arrived. In the advanced
settings section, the user can select between 1 and 10 hours to
be pre-loaded. For animations faster than a second, this value
automatically changes to 5 if it was lower.

To optimize memory usage, the application uses a limited
number of materials representing an agents. There are exactly
as many materials as phases of the disease and they are
shared by entities. One material occupies only about 3.6 KB of
memory. Each of the materials is declared using GL shaders,
giving full control over how the agents are drawn directly by

the GPU. Thanks to this, it is possible to effectively and easily
visualize an agent as a circle with a border and additional
transparency without significant degradation of animation per-
formance.

VII. CONCLUSIONS

The developed system allows to effectively present the
behavior and health status of 500,000 residents of the city
in a web browser environment. It was achieved by combining
mechanisms such as: automatic change of detail level, special
GPU shaders, application of hash functions for agent spread.
Processing of over 2 billions of data records were the main
challenge. However experiments have shown that modern
database engines with GIS extensions could efficiently process
in a such scale of the problem.

As a future direction, a direct connection between the vi-
sualization system and software that models resident behavior
would be beneficial. This would reduce the problem of data
transmission and alignment, and provide the opportunity to
dynamically change the parameters of the influenza model.

ACKNOWLEDGMENT

This work has received support from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 101003606 (HERoS).

REFERENCES

[1] B. Vermeulen, M. Müller, and A. Pyka, “Social network metric-based
interventions? experiments with an agent-based model of the covid-19
pandemic in a metropolitan region,” Journal of Artificial Societies and
Social Simulation, vol. 24, no. 3, p. 6, 2021. Application available at:
https://inno.uni-hohenheim.de/corona-modell.

[2] A. Bernasconi and S. Grandi, “A conceptual model for geo-online
exploratory data visualization: The case of the covid-19 pandemic,”
Information, vol. 12, no. 2, 2021.

[3] T. C. Schelling, “Dynamic models of segregation,” Journal of mathe-
matical sociology, vol. 1, no. 2, pp. 143–186, 1971.

[4] E. Hunter, B. Mac Namee, and J. D. Kelleher, “A taxonomy for agent-
based models in human infectious disease epidemiology,” Journal of
Artificial Societies and Social Simulation, vol. 20, no. 3, 2017.

[5] B. Faucher, R. Assab, J. Roux, D. Levy-Bruhl, C. Tran Kiem,
S. Cauchemez, L. Zanetti, V. Colizza, P.-Y. Boëlle, and C. Poletto,
“Agent-based modelling of reactive vaccination of workplaces and
schools against covid-19,” Nature communications, vol. 13, no. 1, pp. 1–
11, 2022.

[6] Sirenko, M., Rui Yap, J., Sarva, S., Verbraeck, A., Comes, T., “D2.1
local behavioural model and recommendations for local covid-19.”
https://www.heros-project.eu/output/deliverables/. Accessed 30/05/2022.

[7] M. Zhang, A. Verbraeck, R. Meng, B. Chen, and X. Qiu, “Modeling
spatial contacts for epidemic prediction in a large-scale artificial city,”
Journal of Artificial Societies and Social Simulation, vol. 19, no. 4, 2016.

[8] Y. Ge, R. Meng, Z. Cao, X. Qiu, and K. Huang, “Virtual city: An
individual-based digital environment for human mobility and interactive
behavior,” Simulation, vol. 90, no. 8, pp. 917–935, 2014.

[9] Delft University of Technology, “Dsol manual.”
https://simulation.tudelft.nl/dsol/manual/. Accessed 30/05/2022.

[10] ISO 9241-11:2018, “Ergonomics of human-system interaction – part 11:
Usability: Definitions and concepts,” standard, International Organiza-
tion for Standardization, 2018.

[11] M. Pietroń, “Analysis of performance of selected geospatial analyses
implemented on the basis of relational and nosql databases,” Polish
Cartographical Review, vol. 51, pp. 167–179, 10 2019.

[12] Makris, A., Tserpes, K., Spiliopoulos, G. et al., “Mongodb vs postgresql:
A comparative study on performance aspects,” Geoinformatica, vol. 25,
p. 243–268, 2021.

[13] A. Scott, M. MacDonald, and S. Powers, JavaScript Cookbook, ch. 6.
O’Reilly, 3 ed., 2016.

Authorized licensed use limited to: Centrum Badan Kosmicznych PAN. Downloaded on December 22,2022 at 09:23:50 UTC from IEEE Xplore. Restrictions apply.

