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Executive Summary

The goal of deliverable 2.3 (D2.3) is to develop a coupled model and conduct a scenario analysis. The

coupled model combines the agent-based model (ABM from deliverable 2.1 with a

susceptible-exposed-infected-recovered dead (SEIRD) system dynamics model (sd). The scenario

analysis focuses on the impact of travel on the spread of the virus. Besides, we build a GIS dashboard

to visualise the model outcomes.

We present the methodology of how one can couple an ABM with a SD-like model. We extensively

discuss the coupling and additions we construct to make the models interact. For instance, we

introduce a new SEIRD-based progression model and two new transmission models: distance and

probability-based. We are also “opening up” the previously closed system of D2.1 and include travel

between the cities and countries. While the resulting model covers The Hague, the Haaglanden

region and two European countries: Belgium and Germany, one can extend it to include more

countries. We further explain how we built a GIS dashboard.

The coupled model (COOL) allows us to examine the impact of local (within the Haaglanden region)

and international travel (from Belgium and Germany to The Hague). With the COOL, we analyse three

scenarios: business-as-usual, a highly infectious city and a highly infectious country. From the first

scenario, we found that several social groups significantly contribute to the spread of the

disease—for instance, workers and kindergarten and school pupils. Because of that, there is a

substantial difference in the total number of infections in cities/countries. Satellite cities and

countries stop at 42-64%, while The Hague reaches 92%. Such a finding highlights the importance of

non-pharmaceutical interventions aimed at social groups with more extensive contact networks. In a

highly infectious city scenario, satellite cities get infected faster, especially the highly infectious city

Rijswijk itself. The infection rate factor of 16 (the worst case scenario) makes infection happen around

ten days earlier. It also leads to more infections compared to the business-as-usual. In the worst case

scenario, the increase for the satellite cities is 42.78% and 39.92% for Rijswijk. The impact on The

Hague is however limited. Due to limited interactions between The Hague's and other entities'

agents, a higher IRF does not “shift the curve” or increase the total number of infected in The Hague

agents. Therefore, again we argue in favour of other NPIs that will help prevent the virus's spread

within The Hague. The last scenario, a highly infectious country, significantly "shifts the curve." A

double increase in infection rate makes an outbreak happen 20 days earlier. Such an impact highlights

the importance of limiting travel or extensive testing policies for countries with a high infection rate.

We visualise the scenarios in a GIS dashboard.

Thus, we have observed a need for the pandemic response across all resolutions: neighbourhood, city

and country. Both local and international travel have an impact on the spread of the virus. We

recommend limiting travel and a comprehensive testing policy to avoid “shifting the curve” and

overwhelming the healthcare system. However, limiting the travel is not a sufficient measure to

“flatten the curve.” There is a need for the NPIs discussed in D2.1 to combat the pandemic in its early

stages.

© HERoS Consortium PU



Table of content

1 Introduction 1

2 Methodology 5

Coupling agent-based and system dynamics models 5

SEIRD-based system dynamics-like model of Covid spread 9

Epidemiological model 9

Modified SEIRD progression model 10

Distance-based infection model 12

Probability-based infection model 18

Scenario analysis 19

Visualisation of model outcomes 19

Analysing the impact of Covid restrictions on Long-Term Care 20

3 Results 23

Scenario analysis 23

Business-as-usual 23

A highly infectious satellite city 29

A highly infectious neighbouring country 34

An interactive dashboard for model outcomes 39

4 Conclusion 43

A coupled model and scenario analysis 43

Web-based GIS applications 44

Impact of Covid policies on elderly in Long-Term Care 44

Limitations and future work 44

Bibliography 46

Acknowledgements 50

Annexes 51

Source code 51

Simulation model 51

Experimental setup 51

Default parameters 51

Business-as-usual 51

A highly infected satellite city 52

A highly infected neighbouring country 52

Are preparedness indices reflective of pandemic preparedness? 52

© HERoS Consortium PU



Table of tables

Table 1. Example of data on days it takes to transit from compartment to compartment.

Table 2. Example data on probability to transit from compartment to compartment of 60-69 age

group. Constructed from the RIVM data on the number of people by compartment (RIVMdata, n.d.).

Table 3. Epidemiological model parameters.

Table 4. Number of agents by entity.

Table 5. Default properties of the coupled simulation model.

Table 6. Parameters used in the businesses-as-usual scenario.

Table 7. Parameters used in the highly infected satellite city scenario.

Table 8. Parameters used in the highly infected neighbouring country scenario.

Table 9. Ten most negatively correlated Global Health Security index (GHSI) sub-indicator items

against COVID-19 mortality data for 40 countries with highest mortality data in GHSI.

Table 10. Ten most positively correlated Global Health Security index (GHSI) sub-indicator items

against COVID-19 mortality data for 40 countries with highest mortality data in GHSI.

Table of figures

Figure 1. Earth System interactions linked to the COVID-19 socioeconomic disruption (Diffenbaugh et

al., 2020).

Figure 2. Evolution of the ratio of confirmed cases/resident population in Italy. The spatial spread

over time of COVID-19 is plotted from February 25 to March 25, 2020 (Gatto et al., 2020).

Figure 3. Example of website visualising models’ outcomes. Dashboard of The European Covid-19

Forecast Hub; available online at https://covid19forecasthub.eu/visualisation.html; screenshot date:

20 September 2022.

Figure 4. Schematic representation of spatial resolutions of the model.

Figure 5. Spatial representation of two (left) and three resolutions (right).

Figure 6. Schematic representation of how models of different resolutions interact. An arrow denotes

travel from an entity to an entity.

Figure 7. OD matrix for the Haaglanden region: workers travelling for work.

Figure 8. Workers travel for work within the Haaglanden region. The thickness and colour of the

arrow represent the number of agents. A geographic flow map with FlowmapBlue (FlowmapBlue –

Flow Map Visualization Tool, n.d.).

Figure 9. Epidemiological model.

Figure 10. A simple SEIR Susceptible-Exposed-Infected-Recovered compartmental model.

Figure 11. A modified SEIRD Susceptible-Exposed-Infected-Recovered-Deceased model of the coupled

model.

Figure 12. Theoretical model of the viral load changes over time.

Figure 13. Development of the viral load of the alpha variant over time.

Figure 14. Relations between viral load and transmission probability.

Figure 15. Development of transmission probability over time.

Figure 16. Relations between average distance and distance factor.

© HERoS Consortium PU

https://www.zotero.org/google-docs/?X2u0N7
https://www.zotero.org/google-docs/?tAqIOY
https://www.zotero.org/google-docs/?tAqIOY
https://www.zotero.org/google-docs/?CNcszO


Figure 17. Experiments with infection probability.

Figure 18. Infection rate factors for satellite cities.

Figure 19. General  workflow of creating data visualisation.

Figure 20. Methodology.

Figure 21. COVID-19 restriction effect was calculated as the difference in differences of the outcomes

of the restricted group (green line) and control group (blue line).

Figure 22. Effect on wellbeing

Figure 23. Number of agents by compartment.

Figure 24. Fraction of infected agents from an entity: The Hague, satellite cities and neighbouring

countries.

Figure 25. Fraction of infected agents by entity at the end of the simulation run.

Figure 26. Infection matrix: agents of which social groups infect other social groups at the Workplace

type of location.

Figure 27. Infection matrix for Satellite workplace.

Figure 28. Infection matrix for Satellite accommodation.

Figure 29. Infection matrix for Accommodation.

Figure 30. Spatial distribution of infections by residence (fraction of the total population) and by

location.

Figure 31. A linear regression model correlating the number of infected residents (x) with the number

of infections in a neighbourhood (y).

Figure 32. corr(x,y) over the simulation run.

Figure 33. A highly infectious satellite city Rijswijk.

Figure 34. Number of agents by compartment.

Figure 35. Fraction of infected agents by entity.

Figure 36. Differences in the number of infections with different rate factors. B.c.s. - business-as-usual

scenario with the rate factor of 0.91239, W.c.s. - worst case scenario with the rate factor of 16.

Figure 37. Differences in the total number of infections by entity and scenario.

Figure 38. Infection matrix for Workplace.

Figure 39.  A highly infectious neighbouring country: Belgium.

Figure 40. Number of agents by compartment.

Figure 41. Fraction of infected agents by entity.

Figure 42. Differences in the number of infections with different rates. B.c.s. - business-as-usual

scenario with the rate of 0.00096, W.c.s. - worst case scenario with the rate of 0.36.

Figure 43. Differences in the total number of infections by entity and scenario.

Figure 44. The map component of the web-based interactive application enabling users to compare

the ABM model’s outcomes.

Figure 45. The agent-based simulation model as a web-based interactive application.

© HERoS Consortium PU



List of Acronyms

Abbreviation /
acronym

Description

ABM Agent-based model

BCS Base case scenario

CM Compartment model
COOL Coupled model

CTS The Hague to satellite city worker

DBIM Distance-based infection model

GIS Geographic Information System

ICU Intensive care unit

IF Infection rate

IFR Infection rate factor

IM Infection matrix

JSON JavaScript Object Notation

LTC Long-Term Care

NCTC Neighbouring country to The Hague worker

NPI Non pharmaceutical intervention

PBIM Probability-base infection model

PHP Hypertext Preprocessor

POI Point(s) of interest

RAI Resident Assessment Instrument

RDBMS Relational Database Management System

REST API Representational State Transfer Application Programming Interface
SARS-CoV-2 Covid

SD System dynamics

STC Satellite city to The Hague worker

STS Satellite city to satellite city worker

TPDF Triangular probability density function

WCS Worst case scenario

© HERoS Consortium PU



1 Introduction
The SARS-CoV-2 (Covid) pandemic has affected the globe in waves for over two years. On 25 September

2022, worldwide mortality reached 6,536,643 deaths (Coronavirus (COVID-19), n.d.). In contrast to what

was expected by WHO and other officials initially, it has spread across the globe. No country in the world

has not experienced the consequences of the global pandemic. The first to take a hit was the local

healthcare systems. What is known now as the “wild type variant” put hospitals and intensive care units

(ICU) at the edge and beyond their capacity. From there, the consequences of the pandemic reached other

elements of a global society: transport (travel bans), supply chain (lack of resources), economy (GDP drop),

ecology (temporary drop in C02 emissions), politics (protests due to Covid-19 measures) and many more.

Many countries still struggle to recover from the damage afflicted by Covid.

Figure 1. Earth System interactions linked to the COVID-19 socioeconomic disruption (Diffenbaugh et al.,

2020).

Another issue which Covid highlighted is how heterogeneous (different) the population within a country

is. (Nations, n.d.) reports that the largest cities were hit the most. During the first wave of the pandemic

Italy was one of the countries with the highest number of cases and mortality. Also, when analysing the

number of positive tests on a map, it became clear that certain regions have higher numbers. This

phenomenon is now known as a hotspot. Therefore, it is essential to “zoom-in” into the country and

recognise geographical differences. Going further, (Sharifi & Khavarian-Garmsir, 2020) reported that cities

are also heterogeneous. Certain districts and communities were hit most. Empirical evidence points us at:

unemployment, number of people living together, health problems, elderly and others. Some modern

cities are segregated (Guzman et al., 2021). As a result people who have some or even all of those

attributes live in the same district. This results in an amplifying effect. Besides, some people do low-paid
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jobs and have to be essential workers (e.g. cashiers at a supermarket). These findings highlight the

importance of the model’s scale (resolution). That is it, what are the units in the model: countries, regions,

cities or their residents?

Figure 2. Evolution of the ratio of confirmed cases/resident population in Italy. The spatial spread over

time of COVID-19 is plotted from February 25 to March 25, 2020 (Gatto et al., 2020).

A population group that requires extra attention is the eldery. Covid mortality risk in the first wave of the

pandemic was more than 62 times higher for an individual aged over 65 compared to one under 50 (Yanez

et al., 2020).

Another complication related to Covid is the presence of many uncertainties about the virus and its

effects on individuals. At the beginning pandemic, we knew little about how the virus spreads: via droplets

or aerosol transmission (Jayaweera et al., 2020) and what are its parameters: incubation period, viral load,

etc (Wang & Flessa, 2020). Scholars reported these numbers with a significant variance around them. Such

uncertainty complicated the policy response. What should the government do if it is unknown how the

virus spreads? Can it advise people to meet and interact in an open space where everyone “feels” healthy,

or does it bring too much risk since people can be infectious but asymptomatic?

People’s behaviour plays a significant role in how Covid spreads. At the beginning of the pandemic, when

we knew little about the virus (virus uncertainties), the majority of the population in some countries took

advice from the government seriously. As a result, there was a high level of “compliance.” Later on, the

situation started to change. In the Netherlands, for example, already during the second wave, some

population groups began to “bounce back” to normal: more frequently meeting friends, not keeping social

distance. Such a trend continued, especially after vaccines were made available and vaccination rates

started picking up. A term to describe such behaviour is pandemic fatigue. Scholars are trying to explain

why people behave in a certain way: rational, Homo economicus, fear, and others. Such knowledge can

help governments design more effective policies.

To address these uncertainties, researchers employed models and got involved in the policy-making

process. There are different models: mathematical, machine learning, and agent-based, with an overall

goal to either predict or better understand how the virus spreads. For example, Reich Lab COVID-19

Forecast Hub uses an ensemble of models to forecast COVID-19. The Imperial College COVID-19 Response

Team proposed an ABM to combat the pandemic in the UK (Ferguson et al., 2020). The findings are usually

presented in a dashboard: an app or a website with the key model outcomes (Figure 3). Based on the
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findings from these models, governments can propose a new policy: people cannot gather in groups of

more than three people, or plan “reopening” (lifting the measures): schools can open.

Figure 3. Example of website visualising models’ outcomes. Dashboard of The European Covid-19 Forecast

Hub; available online at https://covid19forecasthub.eu/visualisation.html; screenshot date: 20 September

2022.

The policy response to Covid varied. Before a certain point in time, there was no vaccine (first, second and

third waves); therefore, only non-pharmaceutical interventions (NPIs) were available. There is a variety of

NPIs and their combinations (Haug et al., 2020). One major category aims to limit mobility: external (from

other countries) and internal (within the country and smaller geographical regions). China, for example,

issued a “full lockdown”: no one can leave the house, and only a limited number of essential workers are

operating. The Netherlands implemented an “intelligent lockdown”, requiring people (only prescribes) to

stay home as much as possible. Sweden used a different approach, the so-called “Swedish experiment.” In

short, the government imposed fewer measures than other European countries, e.g. Germany. The

effectiveness of these measures is still an open debate. However, what became clear is that both types of

mobility matter: external and internal (Alessandretti, 2022). Macro mobility (e.g. air traffic from the UK to

the Netherlands) and micro mobility (daily commute within The Hague for shopping) result in a complex

set of interactions. It is unclear whether one should combine these measures with other NPIs (e.g.

kindergarten and school closures) to be more effective.

The aims of deliverable 2.3 (D2.3) are:

● Develop a SEIRD-based system dynamics-like (SD) model to understand how the virus spreads

globally,

● Couple the SD model with the agent-based model (ABM) from D2.1 and conduct a scenario

analysis,

● Visualise the outcomes of the model in a GIS dashboard.
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Additionally, we examine the impact of Covid on the elderly in Long-Term Care (LTC) in Finland. We analyse

the change in their health status by comparing two periods: during the national social distancing policy

and pre-Covid. We conduct analyses utilising the Resident Assessment Instrument (RAI) that measures the

functional, cognitive, social, and mental health and wellbeing of the elderly.

Modelling efforts result in policy advice. As we previously discussed, some models played an essential role

in policymaking. However, there is still a lack of knowledge about the interplay between micro and macro

level “interactions” under uncertainty. The coupled model can help understand the complex interplay

between limiting macro and micro-mobility and the need of other NPIs. To answer this question, we

propose a two-step methodology. We start by developing a compatible SD-like model. The proposed

model operates on two resolutions: mid-resolution for cities and low-resolution for countries. Next, we

present the way to model the elements of this model: agents, locations, activities and transport. Further,

we explain the epidemiological model, which consists of three submodels: an extended SEIRD-based

progression model and distance-based and probability-based infection models. Because the coupled

model operates on three resolutions, its infection models must differ.

The report consists of 4 sections. The Methodology section explains how we built the SD-like model,

coupled it with the ABM model, and conducted scenario analysis on it. The section continues with a

description of the GIS dashboard. The Methodology ends with a subsection on analysis of the impact of

Covid on the elderly. The Results section presents the main findings from the analysis and presents the

dashboard. Conclusion summarises the work, brings the findings into a broader context and reports advice

for policymakers.

©HERoS Consortium PU
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2 Methodology
We propose a two-step methodology followed by analysis and visualisation. First, we explain how we do

the coupling: combining system dynamics (SD) and agent-based models (ABM). This process can be done

in multiple ways depending on the purpose of the coupled model. We aim to explore the impact of local

(national with a small region) and international travel on the SARS-CoV-2 spread. Second, we introduce a

SEIRD-based (Susceptible-Exposed-Infected-Recose-Dead) system dynamics-like model of Covid spread.

This model is a simplified but compatible version of a full-scale SD model. It helps to understand how the

virus spreads on a city/country level and allows us to examine individual infections among city visitors.

Subsequently, we introduce scenario analysis and explain how we build an interactive dashboard.

Coupling agent-based and system dynamics models

Agent-based modelling is a simulation modelling formalism which proposes to model complex systems

“bottom-up”, see D2.1. A modeller creates agents – the primary entities of a model that interact -, defines

a set of rules of how these agents interact, and adds the environment in which they interact.

SD is an alternative simulation modelling formalism. SD models complex systems “top-down” as a

combination of stocks, flows, feedback loops and delays. The modeller does not specify either individual

agents or their behaviour. Instead, they use more general mechanisms. SD often assumes that a system of

interest is homogeneous. For example, instead of considering differences in the behaviour of various social

groups during the pandemic, SD models them as a single ‘stock’.

SD and ABM have pros and cons, and the choice of formalism depends on the problem. One of the pluses

of SD is that one does not specify numerous rules for different agents: one of the core ABM’s activities.

This makes the modelling process simpler and faster. On the other hand, it limits the analysis. We cannot

analyse agent groups anymore but instead use aggregated numbers.

To benefit from both, and as outlined in the description of work, we can couple them. In simple words, the

model coupling is a process of combining several models. For example, one can combine a SEIRD

epidemiological model and a transport model to study the impact of transport on disease spread.

One of the reasons for coupling is that building a high-resolution ABM model is complicated and1

data-intense. Ideally, it requires microdata (or its sample) which has an extensive set of attributes about

each person living in a city of interest or elsewhere. This data is very privacy sensitive and not available for

public use. As an alternative, we propose to couple a high-resolution and data-intense ABM with less

complicated but still useful mid and low-resolution models. The mid and low-resolution models are more

homogeneous (SD-like). We assume that there is no need to capture the whole population of a city as we

did for the ABM, but only a fraction of it. Therefore, the agents of those models will not be involved in all

activities that the ABM agents have. Instead, we model only the two core ones: Work and Personal care.

To account for details related to infection, we connect the mid-resolution model’s probability-based

infection model to the ABM distance-based infection model via the infection rate factor (see

subsubsection Probability-based infection model). Our coupled model (COupled mOdeL - COOL) operates

at three spatial resolutions: country, city, and neighbourhood (Figure 4).

1 A high-resolution model has a great level of detail. In our case, it is an ABM model from task 2.1. It has a
number of agents approximately equal to a city's population, which perform activities over a
representative number of places of interest (POI).
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Figure 4. Schematic representation of spatial resolutions of the model.

Figure 5. Spatial representation of two (left) and three resolutions (right).

The coupled model combines a city: The Hague, cities nearby: Haaglanden region, which we call satellite

cities and two bordering countries: Belgium and Germany, which we call neighbouring countries (Figure 5).

There are plenty of difficulties in model coupling. One of the first issues a modeller has to resolve is to

ensure that the models are compatible and that their elements can interact. For example, if agents are

getting infected in an SD model and the transport model is an ABM, one should create a mechanism

allowing agents to travel. Another issue is aligning simulation time. SDs operate with a fixed usually large

(e.g. a day) time ‘tick’, but the agents of an ABM can execute many actions within a short period (e.g.

every 10 minutes). Finally, if we build two models using different software, they need to be technically

connected.
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With the coupled model, we seek to analyse the impact of travel on the spread of Covid. While the model

from task 2.1 is a model of a “closed system”: agents cannot leave The Hague for whatever reason (e.g.,

for work), the coupled model “opens” the system up (Figure 6). To capture the travel, we introduce four

new social groups: The Hague to satellite city worker, Satellite city to The Hague worker, Satellite to

satellite city worker, and Country to The Hague worker. The first social group represents agents living in

The Hague but who travel and work in one of the neighbouring cities (e.g. Delft), and the rest of the

activities they perform in The Hague. The second category is the opposite: an agent lives in Delft but

works in The Hague. The third one captures the travel between the satellite cities (e.g. from Delft to

Rijswijk). Furthermore, the final category represents people living in a neighbouring country, like Belgium,

and working in The Hague. We assume work to be the purpose with the highest number of travellers.

Figure 6. Schematic representation of how models of different resolutions interact. An arrow denotes

travel from an entity to an entity.

To model the travel between The Hague (neighbourhoods in blue in Figure 6) and satellite cities, we use

ODiN data provided by Statistics Netherlands (Statistiek, n.d.). Using ODiN we model the

Origin-Destination Matrix (OD matrix) for the Haaglanden region. The OD matrix allows us to estimate

how many agents within each of the newly defined social groups travel from a city to a city (Figure 7,

Figure 8).
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Figure 7. OD matrix for the Haaglanden region: workers travelling for work.

Figure 8. Workers travel for work within the Haaglanden region. The thickness and colour of the arrow

represent the number of agents. A geographic flow map with FlowmapBlue (FlowmapBlue – Flow Map

Visualization Tool, n.d.).

We estimate the number of workers travelling from Belgium and Germany to The Hague using Grens data

provided by Statistics Netherlands. While the data reports the total number of people travelling to a

bigger region, for the sake of simplicity, we assume 500 workers from Germany and 500 from Belgium to

©HERoS Consortium PU
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have a permanent workplace in The Hague and commute daily to The Hague. Importantly we do not

model mobility from The Hague to neighbouring countries.

We use an approach similar to the one in task 2.1 (see D2.1) to build both the mid and low-resolution

models. First, we generate a synthetic population: agents living in each satellite city. However, we limit

ourselves to only a few attributes: age and social group. For each satellite city, we generate a part of its

population: within the 18-65 age group and assign them the worker social group. To further identify what

kind of worker it is: Satellite to The Hague worker or Satellite to Satellite worker, we OD matrix. This

process results in the number of agents-workers by satellite city with a workplace elsewhere. While the

type of workplaces may differ (e.g. Delft agents work in education in The Hague), we assume that it is

likely that they can work at a workplace of any type. Next, we model the locations of mid and

low-resolution models. We introduce two new types of locations: Satellite workplace and Satellite

accommodation. These locations do not have the key attribute of the ABM model: area. Instead, they play

the role of a “sink.” Agents go to Satellite workplaces to execute work activities for around 8 hours and

then move to stay at Satellite accommodation until the end of the day. Thus, their activities are Work and

Personal care. Notably, we do differentiate between the weekdays and weekends for these agents.

The key difference between the models with different resolutions is how infections happen. The

high-resolution model uses a "distance-based" infection model, while the mid and low-resolution models

use system dynamics like a probability-based infection model. We discuss all necessary details in the

following subsection.

SEIRD-based system dynamics-like model of Covid spread

The high-resolution model and mid/low-resolution models have different levels of detail. Each location in

the ABM has an area, while SD-like models do not have locations as such. Therefore, their infection

models differ. The Hague uses the "distance-based" infection model, and satellite cities and neighbouring

countries use the "probability-based" infection model. We structure this subsection as follows. We first

explain the epidemiological model. It has two main parts: progression and infection models. Then we

zoom-in in on each of the submodels: distance-based and probability-based infection models.

Epidemiological model

The epidemiological model of the COOL consists of two parts: progression and infection models (Figure 9).
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Figure 9. Epidemiological model.

Modified SEIRD progression model

There are different models to understand how a virus spreads. One of the basic categories is

compartmental models (CM). A compartmental model in epidemiology is a mathematical model

formulated as a set of differential equations. The population of, e.g., a country split into a set of

compartments: Susceptible, Infected, and Recovered in the case of a simple SIR model. One must specify a

set of parameters to predict how the virus progresses: population size and transmission rates. Once done,

we can observe “infection curves” and potentially plan policy interventions. For example, the social

distancing policy leverages parameter β (number of contacts between susceptible and infected

individuals) and, therefore, can decrease infections (Figure 10).

Figure 10. A simple SEIR Susceptible-Exposed-Infected-Recovered compartmental model.

There are different types of CM. For example, for Covid modelling, scholars often use a modified-SEIRD

model (Figure 11), which accounts for symptomatic and asymptomatic infections. It also has Hospitalised

and ICU states which help to plan hospital and ICU capacity. Of course, having more compartments

requires us to specify more parameters and makes the model more complicated to calibrate.
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Figure 11. A modified SEIRD Susceptible-Exposed-Infected-Recovered-Deceased model of the coupled

model.

First introduced by (Ross, 1916), CM is now perceived as a very general modelling technique and has been

extensively criticised for being “top-down” (Carlson et al., 2020), but some argue that compartmental

models can still be useful (Araújo et al., 2020). CM may serve as a base for an SD model (Gel et al., 2020).

In such a case, one can more easily explore the impact of different policies on the progression of the

disease.

The progression model of COOL aligns with the state-of-the-art Covid compartmental models. It is a

modified SEIRD-based model which accounts for asymptomatically infected individuals and has two

additional compartments: Hospitalised and ICU (Figure 11). The main difficulty of any progression model is

the specification of its transition rates. Put simply, how many people will move from, e.g.

Infected-Symptomatic to Hospitalised, and how long they will stay in the latter (Table 1 and 2). Note that

the infection model defines the transition from Exposed to either Infected-Symptomatic or

Infected-Asymptomatic. The progression model describes the "social" or "behavioural" aspect of the

disease. Indeed, whether or not a person will go to a hospital depends not only on the virus's

epidemiology but also on other social and behavioural factors. For example, a person can go to a hospital

long after the clinical disease period is over because of the complications.

From/To Hospitalised ICU Dead Recovered

Infected-Asymptomatic
TPDF(12,16,20
)

Infected-Symptomatic TPDF(7,9,11)
TPDF(12,16,20
)
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Hospitalised TPDF(1,3,5) TPDF(1,3,5)
TPDF(11,13,15

)

ICU TPDF(2,4,6)
TPDF(28,30,32

)

Table 1. Example of data on days it takes to transit from compartment to compartment.

From/To Hospitalised ICU Dead Recovered

Infected-Asymptomatic

Infected-Symptomatic 0.44038

Hospitalised 0.14674 0.0

ICU 0.08393

Table 2. Example data on probability to transit from compartment to compartment of 60-69 age group.

Constructed from the RIVM data on the number of people by compartment (RIVMdata, n.d.).

Distance-based infection model

To model infections in the ABM, we propose a distance-based infection model (DBIM). This model takes

into account an extensive set of parameters, including NPIs: social distancing and mask use. As a base, we

use the work of (Phillip Stroud, 2007).

First we model viral load ( ) as a function of time in days (t) since infection (Kissler et al., 2021; Sun et al.,

2022). Viral load depends on latent period (L), incubation period (I), clinical disease period (C) in days and

viral load peak ( ) in log10 copies per mL.

Figure 12. Theoretical model of the viral load changes over time.

These are epidemiological parameters and they differ by variant. Here is a set of parameters for alpha

variant:
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L = 2

I = 3.4

C = 6.2

if t >= L and < I:

= * ((t - L) / (I - L))

elif t >= I and t <:

= * ((I + C - t) / C)

else:

= 0

Figure 13. Development of the viral load of the alpha variant over time.

Second, we have to convert the viral load into what we call transmission probability P. P captures how

likely an infected person can transmit a virus to a susceptible person in close contact (0 m distance

between people). P must be dependent on time: we need to know how long the close contact lasts to

estimate P correctly. For now, let us loosen this dependency. Relations between transmission probability

and viral load are sigmoid-like:

where k is transmission rate, is viral load given t days since infection and is reference viral load

(calibration factor). After we calibrate this model the values are:

k = 2.294

= 4.0
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Figure 14. Relations between viral load and transmission probability.

Transmission probability over time becomes:

Figure 15. Development of transmission probability over time.

Finally, we formulate infection probability , where i is the index of the susceptible person and j is the

index of the infected person.

where
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● is the number of infected individuals in the k-th location

● is a factor for mask effectiveness

● is transmission probability of the infected person j at d days since infection

● is the time person i and j spent together

● is a factor for distance

● is the average distance between people

● is the area of the k-th location

● is the total number of people in k-th location

● is a factor for social distancing

● is a calibration factor

To calculate the average distance we use a simple formula:

Social distancing spreads people apart. Here is the distance after which there is no infection. Let us

assume that there is no infection after 3 metres. If we use a corresponding policy, then we compute ,

and not .

To define a factor describing relations between distance and transmission probability, we come up with a

simple theoretical model:

Which given , and converts into
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Figure 16. Relations between average distance and distance factor .

Importantly, the current version of the formula has to be calibrated with the use of . There is a lack of

literature on how

To verify the model we do a series of experiments:

Experimental setup
Number of infected people in the room M: 1
Mask effectiveness mu: 1e-05
Days since infection of the infected person d: 3.4
Time spent together t_i,j: 8
Room of A m2: 25 m2
Number of people in the room N: 7
Social distancing psi: 1 m
Calibration factor alpha: 0.025
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Figure 17. Experiments with infection probability

Name Symbol Value Model(-s) References

Latent period L 2 Viral load (Goyal, Reeves,
Cardozo-Ojeda, et
al., 2021; Goyal,
Reeves, Thakkar,
et al., 2021; Kissler
et al., 2021; Peng
et al., 2021; Sun et
al., 2022)

Incubation period I 3.4 Viral load

Clinical disease
period

C 6.2 Viral load

Peak viral load 7.23 Viral load

Reference viral
load

4 Transmission
probability
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Transmission rate k 2.294 Transmission
probability

Factor for social
distancing

1 Infection
probability

Calibration factor 0.025 Infection
probability

Table 3. Epidemiological model parameters.

Probability-based infection model

We propose simplifying the SEIRD-based system dynamics model to model infections in mid and

low-resolution models: a probability-based infection model (PBIM). PBIM uses a single value - an infection

probability, to infect susceptible agents. However, infection probabilities for satellite cities and

neighbouring countries are different. The first one is based on the infection rate factor and uses infection

probability for the worker social group from the ABM. The second one is based on the infection rate of a

country and is independent of the ABM.

An infection rate factor (IRF) of a city is the number of positively tested individuals divided by the city’s

population. To calculate IRF we use RIVM’s data on positively tested individuals from 1 September 2020 to

1 December 2020 (RIVMdata, n.d.). Figure 18 shows infection rate factors for different cities.

Figure 18. Infection rate factors for satellite cities.

For the neighbouring countries, we calculate an infection rate (IR) equal to the number of positively tested

individuals divided by the country's population. To calculate IRs we use open data on positively tested

individuals from 1 September 2020 to 1 December 2020 (Covid19-Eu-Zh/Covid19-Eu-Data: Automated

©HERoS Consortium PU

18

https://www.codecogs.com/eqnedit.php?latex=%5Cpsi#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha#0
https://www.zotero.org/google-docs/?6WhWV2
https://www.zotero.org/google-docs/?zeU8Py


Data Collection: COVID-19/SARS-COV-2 Cases in EU by Country, State/Province/Local Authorities, and Date,

n.d.).

PBIM will not change in which compartments an agent is. That is, once exposed, they will go through the

whole Progression model: from Exposed to Recovered or Dead.

Scenario analysis

To understand the impact of local and international travel on Covid spread, we formulate three groups of

scenarios of interest: business-as-usual, a highly infectious satellite city and a highly infectious

neighbouring country.

Business-as-usual scenario aims to demonstrate what can happen to a highly interconnected region such

as Haagalden when there is no policy in place. In this case, we run the simulation model with a default set

of parameters derived from the literature (see Annexes). Highly infectious city scenarios allow us to

explore the impact of local travel on the spread of the virus. We experiment with the IRF and Rijswijk, a

city closest to The Hague. Note that we are interested in studying first and second-order effects. Three

social groups will be affected directly (first order): The Hague to satellite city workers (CTS), Satellite to The

Hague workers, and (STC) Satellite to satellite workers (STS). These agents can get infected either at work

in a highly infectious city or at home if they live there. Other social groups will experience the

second-order effect: e.g., an infected CTS brings the disease home and infects their family members. In the

last group of scenarios, a highly infectious neighbouring country allows us to investigate whether there is a

need to close the country's borders. Especially when the number of travellers is relatively low. We do this

by sampling the IR of a single country: Belgium.

Visualisation of model outcomes

The Covid pandemic has stimulated the development of tools to communicate pandemic-related data

(Bernasconi & Grandi, 2021). Especially the online ones and with a spatial dimension. Examples are

so-called dashboards - a web-based graphical user interface that provides insight into relevant indicators.

Those dashboards were developed not only by national or international agencies, institutions, and

research centres but also by private companies and individuals and have become an essential source of

information during the pandemic (Kamel Boulos & Geraghty, 2020).

It also has proved that simulation models can help inform the general public and serve as a tool for

policymakers. However, not the models are of interest, but their outcomes. Since the model outcomes

have the same characteristics as the data, we use similar tools to visualise them. We need to find a way to

explain the outcomes with state-of-the-art data visualisation techniques. And dashboards seem the most

efficient and effective solution for timely and comprehensive access to information. Model outcomes

should, however, meet the requirements and deal with the limitations of both: data visualisation

techniques and dashboards.

The first step in building a comprehensive data visualisation is understanding its motive and purpose,

which are closely related to end-users. The process of visualisation design is end-user-driven, and the

knowledge of who the target audience is is crucial from the very beginning. The information on end-user
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needs and visual perceptual skills enables proper identification of the motive and purpose of visualisation,

hence the appropriate selection of its content and functionalities (Figure 19).

Figure 19. General  workflow of creating data visualisation.

We can present data and information in various ways, for example, through charts and maps. Whichever

approach is chosen, the content should be easy to read and comprehend. Therefore the visualisation

should:

● be simple (without irrelevant details and complex components),

● be effective – give answers to all questions the audience may ask (if available data can provide

required information),

● use custom meaningful, and standardised symbology,

● be consistent with the visualisation message (e.g. use purposeful colours).

Furthermore, the web-based approach, as exemplified by dashboards, can improve data and information

sharing to support decision-making if the tool allows for:

● filtering across time and relevant data,

● presenting geospatial distribution of data and area identification,

● zooming the area of interest,

● comparing various outcomes of the model.

Analysing the impact of Covid restrictions on Long-Term Care

Since the Covid restrictions were imposed and data began to accumulate, several studies have been

published for different populations to explore the effects of the restrictions. There was a particular focus

on the impact of restrictions on vulnerable groups such as the elderly. Research on the impact of

restrictions on the elderly (e.g. people living in nursing homes) has shown that although the restrictions

might have had positive effects on the health of the elderly, negative impacts could also be detected.

Previous studies have shown that the restriction might have had a negative impact on memory, anxiety

(Paananen et al., 2021), depression (De Pue et al., 2021), and mental health (Curran et al., 2022).

Furthermore, sleep quality, and activity levels, induced weight loss and loneliness could be detected

(Levere et al., 2021).

The comprehensive long-term impact of some restrictions can only be detected in longitudinal analyses in

the future since some countries are still implementing restrictions at the time of writing. However, in this
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study, we analysed the first period of Covid restrictions. More specifically, we focus on the change in the

health status of the elderly in Long-Term care (LTC) in Finland compared to the pre-Covid health status.

The analysis was conducted utilising the Resident Assessment Instrument (RAI), which measures the

functional, cognitive, social, and mental health and wellbeing of the elderly.

Compared to the earlier published research on the impact of Covid restrictions on people living in nursing

homes, this study presents many contributions. We analyse extensive individual-level longitudinal data on

the well-being of the elderly (from the RAI) collected before and after Covid restrictions. The data allows

us to use the difference-in-differences method to study the causal effects of the restrictions. The results

are based on the changes of individual LTC clients in functional, cognitive, mental, and social functionality

and well-being before and after the Covid restrictions were set in Spring 2020. External caregivers and

nurses collected the RAI, and the assessment form is based on the mature international protocol. To

complete statistical analyses for estimating the effect of Covid restrictions on the elderly in the LTC, we use

the Difference in Differences (DiD) method (Lechner, 2010). DiD estimates the differences between the

changes in outcomes before and after the restriction in “restriction” versus “control groups” (Figure 20).

Figure 20. Methodology.

Data was gathered between 2016-2020 for a cohort of 65 228 long-term care clients, with one group of 16

668 clients who experienced restrictions and three control groups (no restriction), constituting 26 233

clients
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Figure 21. COVID-19 restriction effect was calculated as the difference in differences of the outcomes of

the restricted group (green line) and control group (blue line).

Preliminary results show that effect was detected for several indicators of wellbeing.

Figure 22. Effect on wellbeing
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3 Results
This section is structured as follows. We first show and discuss the model outcomes, which we split by

scenario. Then we present interactive dashboard solutions for these model outcomes.

Scenario analysis

This subsection presents the model outcomes. We first run the model business-as-usual using default

parameters. Then we simulate a highly infectious city scenario. We make Rijswijk, the city closest to The

Hague, a highly infectious city. Finally, we study the impact of a highly infectious country on the spread of

the virus. In our case, this country is Belgium. The combinations of these scenarios will help us understand

the impact of local and international travel on the spread of the virus and provide relevant policy advice.

Business-as-usual

We start the analysis by looking at the number of agents by the compartment of the SEIRD model (Figure

23). There are eight components in total. The total number of agents in the model is 738,131 (553,677

living in The Hague), and as we can see from the first subplot called “Susceptible”, not all of them got

infected. Notably, under the business-as-usual, we do not apply any policy. Agents performing their

routines as usual: worker agents go to work, pupil agents go to school, etcetera. However, if an agent gets

infected and is symptomatic, it will change its schedule to stay at home. Such behaviour can explain why

not every agent in the model got infected. We can also observe many agents at the hospital and ICU

(subplots 5 and 6). Undoubtedly, given such an experimental setup, it becomes impossible for the

healthcare system to operate.

Figure 23. Number of agents by compartment.
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Next, we zoom in into infections (both symptomatic and asymptomatic) at individual entities: The Hague,

some of the satellite cities, and neighbouring countries. Recall that we use different infection models for

high, mid, and low-resolution models. For example, in Westland, IRF is the highest and equal to 0.98. It

means that Satellite workers working or living in this city will get infected at almost the same rate as

workers in The Hague. When we look at the first and the second subplots, we can see that the infection

peak in satellite cities happens slightly later than in The Hague. Depending on the IFR of a city, the first

wave covers a different fraction of the population: for Westland, with IFR=0.98, it is 0.21, and for

Wassenaar, with IFR=0.66, it is 0.15. Infections in Belgium and Germany do not follow a similar pattern,

they develop more independently. Infections in Belgium and Germany do not follow a similar pattern and

develop more independently. Higher IR for Belgium translates into earlier infections, while even though IR

is lower, the second infection peak is higher than that of Belgium.

Figure 24. Fraction of infected agents from an entity: The Hague, satellite cities and neighbouring

countries.
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Remarkably, the total number of infections differs by the entity at the end of the simulation run (Figure

22). The Hague got 92% of its citizens infected, in satellite cities from 57 to 64% depending on their IRF

and 42 and 46% for Germany and Belgium, respectively.

Figure 25. Fraction of infected agents by entity at the end of the simulation run.

Let us explain the reasons for that. We plot infection matrices on the next set of graphs: Figure 26 - Figure

29. An infection matrix (IM) shows agents of which social group infect agents in other social groups at

locations of a specific type. For example, Figure 26 is an IM for the Workplace locations. We can see that

most of The Hague workers are infected by the workers from neighbouring countries (NCTC workers). The

same applies to the workers from the satellite cities (STC workers). NCTS workers infect them at

workplaces in The Hague.
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Figure 26. Infection matrix: agents of which social groups infect other social groups at the Workplace type

of location.

Agents from the three new social groups: STC, STS, and NCTS, have two activities to execute: Work and

Personal care. And besides Workplace locations in The Hague, they can do the first activity at Satellite

workplaces. Figure 27 shows the IM for Satellite workplaces. The second activity is Personal care which

they do Satellite accommodation. The following Figure 28 depicts the IM for Satellite accommodation.

Only certain social groups meet there and infect each other. By comparing these three plots (Figure

26-28), we can see that more infections happen at Satellite accommodations than at Satellite workplaces

and workplaces for STC and STS workers.

Figure 27. Infection matrix for Satellite workplace. Figure 28. Infection matrix for Satellite

accommodation.
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Let us explore IM for Accommodation to understand how disease propagates further (Figure 29). Each

Worker has a place to stay where they interact with other household members. For example, a household

can consist of Worker A, another Worker B, a partner of Worker A, and three school pupils who are their

children. Each of those agents may get a disease at any other location. School pupils can get infected at

School, whereas Worker B can get infected at a Supermarket. Figure 26 highlights the unequal impact of

different social groups on each other. Now, let us continue with the Worker social group. Kindergarten and

School pupil infections are the highest, up to 60% of the total number of Workers infections. Such a finding

indicates a need for a specific policy measure to prevent the spread of the disease. Interestingly, many

Kindergarten and School pupil agents infect other agents from the same social group.

Figure 29. Infection matrix for Accommodation.

The COOL operates at three spatial resolutions: neighbourhood, city and country. Figure 30 shows two

types of outcomes: the ratio of infected agents by their residence (e.g. Centrum neighbourhood has 40%

of its residents infected) and the number of infections in a particular area (e.g. 1000 infections happened

in Delft) at the end of the simulation run. Importantly, these two outcomes are not equal (Figures 31-32).

The reasons are differences in the number of places of interest (POI) and what they are, the preferences

for the POIs to visit (e.g. does an agent go to the closest bar or search for a random one within 2.5 km),

number of agents per entity, etc.
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Figure 30. Spatial distribution of infections by residence (fraction of the total population) and by location.

Figure 31. A linear regression model correlating the number of infected residents (x) with the number of

infections in a neighbourhood (y).
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Figure 32. corr(x,y) over the simulation run.

The coupled model without any non-pharmaceutical intervention (NPI) results in a considerable number

of infected agents at the end of the simulation run in The Hague, satellite cities, and neighbouring

countries. An initial setup of 100 infected agents and a moderately infectious virus variant results in 92%

of the population in The Hague infected, whereas the percentage of infected population in other entities

ranges from 42% to 64%. Remarkably, workers are not the only contributors to the spread of the virus. By

looking at the infection matrix, we learn that the highest number of worker infections at home is through

kindergarten and school pupils. Thus, we have a feedback loop/infection chain. That is, the kindergarten

and school pupil agents get infected at their study places. They further infect each other and workers at

home, and workers spread the disease further at all types of locations that they visit. Therefore, we argue

in favour of the policy measures which we have covered in task 2.1, e.g. closing up kindergartens and

schools to “flatten the curve.”

A highly infectious satellite city

The first category of scenarios explores what can happen to a highly populated city, given that its satellite

city is highly infectious. For that, we select a single closest to The Hague city: Rijswijk (Figure 33). We

sample its IFR from the business-as-usual value of 0.91239 to 16.

Figure 33. A highly infectious satellite city Rijswijk.
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We start the analysis by looking at the number of agents by compartment. This time, we look at four

scenarios of interest: from business-as-usual aka base case (BCS) to mid and worst case (WCS) with

IRF=16. A higher IRF pushes the curves to the left, indicating that the pandemic spreads faster.

Remarkably, the difference in time is relatively smaller: the peak in the second subplot in the first row

(Exposed) for the base case happens at 1385.5 and for the worst case it is 1361.5 hours - a day.

Figure 34. Number of agents by compartment.

Next, we zoom in on infections by entity: how the fraction of infected agents varies given different

scenarios (Figure 35). At first glance, there is no significant difference between the scenarios. However,

with a closer look, we see that the infection curve scales up with the IRF. With IRF=4.0 and IRF=16, The

Hague will get infected slightly faster. The second plot for Rijswijk has a set of notable differences. In the

case of two scenarios when IRF=4 and IRF=16, the Rijswijk population gets infected earlier. The worst-case

IRF of 16 at the start leads to fewer infections in The Hague and neighbouring countries. In satellite cities,

the infection peak occurs around 1600. Mid-case IRF=4.0 pushes infections to happen earlier and has a

milder peak value.
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Figure 35. Fraction of infected agents by entity.

Let us investigate the impact of Rijswijk’s scenarios individually. As we previously saw, WCS makes

infections happen faster. However, from Figure 36, we also learn that the WCS leads to more infections in

the highly infectious city Rijswijk (39.92%) and other satellite cities (42.78%). For The Hague to Rijswijk

workers (CTS), the difference in infections is not as big as for Rijswijk and satellite cities: only 4.81%.
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Figure 36. Differences in the number of infections with different rate factors. B.c.s. - business-as-usual

scenario with the rate factor of 0.91239, W.c.s. - worst case scenario with the rate factor of 16.

Figure 37 shows the fraction of infected agents at the end of the simulation run by an entity and scenario.

With a higher IRF, the total fraction of agents infected at the satellite locations increases. Notice that a

higher IRF has the opposite effect on the neighbouring countries. The larger the IRF, the smaller the

fraction. NCTC workers interact with other agents either in The Hague’s Workplaces or at Satellite

accommodations in their own countries. Thus, if the disease spreads faster locally and the population

recovers, there are fewer chances for NCTS workers to get infected.
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Figure 37. Differences in the total number of infections by entity and scenario.

Figure 38 illustrates the differences in IM between two scenarios: BCS and WCS. As we can see, there are

no differences in the structure of the IM. It was instead minor differences in the number of infections that

scaled with the increase in IRFs.
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Figure 38. Infection matrix for Workplace.

Making one of the satellite cities (Rijswijk) highly infectious speeds up the progression of the disease;

however, the impact is limited. First of all, it affects the city itself. As we see, the outbreak in Rijswijk

happens earlier, and the number of infections doubles under the worst-case scenario. Secondly, it impacts

other satellite cities since there is a constant flow of workers visiting Rijswijk. The impact on The Hague is,

however, limited. As we have seen in the business-as-usual scenario, workers are not the only social group

that spreads the disease. Due to limited interaction between the agents from satellite cities and The

Hague residents, a highly infectious satellite city results in almost the same number of infections as

business-as-usual. Thus, cutting down the local travel can help reduce infections across satellite cities and

delay the disease spread. However, it is an insufficient measure for flattening the curve and reducing the

burden on the healthcare system.

A highly infectious neighbouring country

The last set of scenarios explore the impact of international travel on the spread of the virus. We simulate

four scenarios where we make one of the neighbouring countries highly infectious (Figure 39): IR=0.0009 -

the base case scenario (BCS), IR=0.0019, IR=0.09 and IR=0.36 - the worst case scenario (WCS).
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Figure 39.  A highly infectious neighbouring country: Belgium.

Figure 40 shows the number of agents by compartment under the four scenarios. Opposite a highly

infectious satellite city, we can see how much a higher IR speeds up the disease spread. For instance, a

doubled IR of 0.0192 shifts the infection curve by 20 days. In the WCS, with an IR of 0.36, the outbreak

happens almost 40 days earlier. However, when we look at the total number of agents by compartment,

we do not yet see an immediate increase in the number of infected agents.

©HERoS Consortium PU

35



Figure 40. Number of agents by compartment.

Figure 41 with infection fraction by the entity demonstrates a similar dynamic. With the increase in IR, the

infections start to appear earlier across all of the entities. Remarkably, the IR of 0.09 does not have a spike

in infections, while the rest of the scenarios do.
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Figure 41. Fraction of infected agents by entity.

Analysis of the impact at the entity level follows the same pattern (Figure 42-43). However, it also shows

that the total number of infections does not change significantly for any entity besides Belgium. In a highly

infectious country, it reaches its maximum relatively quickly. Infected agents stop travelling, so the disease

becomes localised. This is possible only in practice, given responsible behaviour and a thorough testing

policy.
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Figure 42. Differences in the number of infections with different rates. B.c.s. - business-as-usual scenario

with the rate of 0.00096, W.c.s. - worst case scenario with the rate of 0.36.
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Figure 43. Differences in the total number of infections by entity and scenario.

The scenarios that include travel from a highly infectious country (Belgium) witness a more rapid spread of

the virus in every entity: The Hague, satellite cities and neighbouring countries. A double increase in the

infection rate (IR=0.0192) makes the infections happen around 20 days earlier. The above result highlights

the importance of closing up the borders if a country's IR is above a certain threshold and the need for

testing. However, similar to the highly infectious city, the increase in the IR does not affect the total

number of infections in The Hague. Thus, to "flatten the curve," one should limit not only the international

travel and introduce rigorous testing but also use other non-pharmaceutical interventions on the city scale

(such as, closing kindergartens and schools).

An interactive dashboard for model outcomes

The primary users of dashboards are policymakers and healthcare operation leaders. It is imperative for

these stakeholders to monitor the spread of diseases and their effects in their area of responsibility. This

will enable them to take appropriate preventive measures and prepare the system appropriately for such

disease outbreaks. Therefore the dashboards design, components, and functionality should give a quick

and comprehensive response to the specific questions regarding the function of policy applied in the

model and the date of its implementation:
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● how many people will be infected on date x,

● how many infected people will require hospitalisation on date x,

● how many hospitalised patients will need admission to ICUs on date x,

● how many people will die due to infection by the date x,

● how many people will recover by the date x,

● what the rates of change in the number of people infected/hospitalised/admitted to ICU are on

the date x or when the respective rate of growth will start to decrease,

● what the spatial distribution of people infected/hospitalised/admitted to ICU will be on date x.

Two web-based solutions and an additional application that dynamically visualize the virus transmission

were developed to satisfy these expectations.

The first solution was created using the ArcGIS Online tool as a web application visualising the ABM

outcomes for The Hague on two administrative levels of the city. The ArcGIS application can be accessed at

https://experience.arcgis.com/template/9ad93be58bb646779ad56e7895667b33.

On separate subpages, the outcomes of the BM model, like the number of individuals currently infected,

hospitalised, admitted on the ICU agents, dead, or recovered, are presented on graphs and maps. All

visualisations are related to “Policy 0” - a no-lockdown strategy and two policies implemented on the 1st

day, 7th and 15th of the pandemic: “soft lockdown” - closure of restaurants, bars, and recreational and

educational institutions, “hard lockdown” - closure of all public services and establishments, except for

parks and essential services. The user can choose a line graph or a logarithmic graph, and maps

aggregated to the urban districts (Stadsdelen) or neighbourhoods (Buurten). Additionally, by using the

appropriate button, the user can see the number of agents in a given state on the 7th, 35th, 63rd, 91st or

119th day of the pandemic.

The development and testing of the above solution revealed several disadvantages of the web application

using a cloud-based software-as-a-service model. For example, the solution provides limited room for

customisation of the web interface, fewer visualisation components and their distribution on a webpage,

and require longer times for downloading and processing latest data.

The second version of the web-based interactive application (available at http://heros.cbk.waw.pl) was

written in PHP, using the Laravel framework (version 9). The data is stored in the relational database

(RDBMS) – MariaDB, compatible with MySQL. The application provides REST API and a web-based

graphical user interface. The API retrieves data in JSON and GeoJSON formats and provides data feed for

scripts that perform visualisation. For developing the charts, we use Plotly.js and for the maps, we use

Leaflet.

The charts and maps are built dynamically and depend on the input parameters selected by the user on

the application page. Scripts send requests to the REST API and receive data in response. After

downloading the data from API, scripts generate the appropriate visualisations. The application has a

built-in cache option, which enhances both the efficiency and speed. After the API's first data retrieval

("first hit"), the prepared data is cached in files on the server side. Subsequent data downloads with the
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same parameters are served from cached files, thus avoiding time-consuming data retrieval from the

database and calculations.

The application also provides the used a feature to compare the spatial spread of Covid over time on two

maps using an interactive time slider. The features that can be selected are:

1. epidemiological state of agents, i.e. number of agents, which are susceptible/exposed/infected

symptomatic/infected asymptomatic/hospitalized/admitted on the ICU/infected in all

states/dead/recovered;

2. map coverage (The Hague or The Hague conurbation (Haaglanden)) and administrative division

(districts (Stadsdelen) or neighbourhoods (Buurten)),

3. policy,

4. scenario within a given policy.

Hovering over a polygon reveals specific details regarding the chosen features, such as the area name,

agents’ state, policy, scenario and the value corresponding to the map's legend (Figure 44).

Figure 44. The map component of the web-based interactive application enabling users to compare

the ABM model’s outcomes.

Below the map component, the model outcomes over time are shown in charts on a linear or logarithmic

scale to choose from. The uncertainty is presented in the form of multiple line charts with time series

data, which show the projections from each scenario within one policy. The area between the line

representing the “best-case” and “worst-case” scenarios at a given time is shaded.
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A completely new approach to ABM model outcomes visualisation has been adopted by creating an

agents interaction simulation model (Mrozek, 2021/2022). This version of the web-based application has

the advantage of giving a dynamic perspective showing the process of infection transitions and places

where people are most likely to be infected. The 180-day simulation tracks the hourly location and

epidemiological state of 534 638 agents within the Hague. In this way, the animation reflects the agent’s

individual behaviour patterns in the function of the age group, family role etc., according to a given

disease prevention policy. Thus, the person-to-person interactions enable tracing of the potential Covid

spread within a specific community.

In order to explore the visualisation effectively and efficiently, the user has the options to pause, change

the animation speed and time, zoom in or out, move the map view, and filter the agents by

epidemiological states. Furthermore, since the statistics are shown on the legend, the user can track the

current number of agents at a specific state (Figure 45).

Figure 45. The agent-based simulation model as a web-based interactive application.

Additionally, the smooth operation of the user’s hardware is ensured by the possibility to select the low,

medium or high level of detail.
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4 Conclusion
With deliverable 2.3 (D2.3), we aimed to investigate the impact of local and international travel on the

spread of Covid. More specifically, the goals of D2.3 were:

● Develop a SEIRD-based system dynamics-like (SD) model to understand how the virus spreads

globally,

● Couple the SD model with the already developed agent-based model (ABM) from D2.1 and

conduct a scenario analysis

● Visualise the outcomes of the model in a GIS dashboard.

Additionally, we examine the impact of Covid on the elderly in Long-Term Care (LTC) in Finland. This

section summarises the work, brings the findings into a broader context and reports advice for

policymakers.

A coupled model and scenario analysis

We present the methodology of how one can couple an agent-based model (ABM) with a system

dynamics-like (SD) model. We discuss in detail the coupling and additions we construct to make the

models interact. For instance, we introduce a new SEIRD-based progression model and two new

transmission models: distance and probability-based. We are also “opening up” the previously closed

system of D2.1 and include travel between the cities and countries. While the resulting model covers The

Hague, the Haaglanden region and two European countries: Belgium and Germany, one can extend it to

include more countries.

The coupled model (COOL) allows us to examine the impact of local (within the Haaglanden region) and

international travel (from Belgium and Germany to The Hague). With the COOL, we analyse three

scenarios: business-as-usual, a highly infectious city and a highly infectious country.

From the first scenario, we found that several social groups significantly contribute to the spread of the

disease—for instance, workers and kindergarten and school pupils. Because of that, there is a substantial

difference in the total number of infections in cities/countries. Satellite cities and countries reach 42-64%,

while The Hague reaches 92%. Such a finding highlights the importance of non-pharmaceutical

interventions aimed at social groups with more extensive contact networks.

In a highly infectious city scenario, satellite cities get infected faster, especially the highly infectious city of

Rijswijk. The infection rate factor of 16 (the worst case scenario) makes infection happen around ten days

earlier. It also leads to more infections compared to the business-as-usual scenario. In the worst case

scenario, the increase for the satellite cities is 42.78% and 39.92% for Rijswijk. The impact on The Hague is

however limited. Due to limited interactions between agents in The Hague and other entities, a higher IRF

does not “shift the curve” or increase the total number of infected in The Hague agents. Therefore, again

we argue in favour of other NPIs that will help prevent the spread of the virus within The Hague.

The last scenario, a highly infectious country, significantly "shifts the curve." A double increase in infection

rate makes an outbreak happen 20 days earlier. Such an impact highlights the importance of limiting travel

or extensive testing policies for countries with a high infection rate.
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Thus, we have observed a need for the pandemic response across all geographic resolutions:

neighbourhood, city and country. Both local and international travel have an impact on the spread of the

virus. We recommend limiting travel and a comprehensive testing policy to avoid “shifting the curve” and

overwhelming the healthcare system. However, limiting the travel is not a sufficient measure to “flatten

the curve.” There is a need for the NPIs discussed in D2.1 to combat the pandemic in its early stages.

Web-based GIS applications

We developed three web-based GIS applications to visualise and explain the outcomes of the coupled

model. These applications provide actionable information since policymakers and healthcare professionals

use visualisations to facilitate decision-making.

In the case of the first two applications, dashboards were employed, as their interactive nature makes the

information scope comprehensive and understandable for non-technical users. Both approaches included

map components (geo-dashboards), which enable stakeholders to answer the questions not only about

the quantitative and time aspects of the disease spread, but also about the geographic distribution, and

hence help to plan the appropriate preparation of the health care system in the right place at the right

time.

The third application was developed in the form of agents’ animation within a city. This approach allows

the stakeholders to improve process model comprehension in particular regarding the behaviour patterns

resulting in rapid spread of the pandemic.

Regardless of the chosen visualisation technique, the user must be aware that despite the employment of

the same dashboard components as in the case of presenting the real data, the modelling outcomes are

always subject to some degree of uncertainty. As such, the related charts and maps shouldn't be treated

as a 100% prediction, but as indicators of possible trends.

Impact of Covid policies on elderly in Long-Term Care

We found that Covid restrictions had a negative impact on the elderly in Long-Term Care (LTC). For

instance, there is a decline in indicators related to activity, mood and behaviour, psychosocial well-being,

memory, and treatments. However, other indicators, such as independent use of the toilet, sleeplessness,

depression, pain, and sadness, did not show any significant change. These results indicate that Covid

restrictions aimed at positive health impact can cause a more long-term negative impact on the well-being

of the elderly in the LTC. We recommend a more comprehensive assessment of the potential impacts of

Covid restrictions on all population groups. For instance, the elderly in LTC. We also argue for more

research on which exact aspects of restrictions negatively impact each indicator (e.g. memory or mood),

longitudinal analysis and cross-country comparison.

Limitations and future work

The coupled model (COOL) generated several insights which can be helpful in policy making. However, we

would like to stress that COOL is an exploratory model and does not predict the future. Instead, we use it

as a "sandbox" to test scenarios that are not feasible otherwise.

Another critical aspect of the model is that it is still a "closed" system, even though a bigger one than in

deliverable 2.1 (D2.1). Therefore, to better understand how disease spreads, we propose to scale up the
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model to the whole country. This will require work on the components of the model which we described

in D2.1: people, locations and activities.

Additionally, more neighbouring countries and other reasons for travel and events will make the model

more realistic. Indeed, the differences in Covid measures between the neighbouring countries generated

controversial travel behaviour. For example, while the Netherlands was experiencing a lockdown: shops,

bars and restaurants were closed, Belgium had them open. It led to a massive influx of Dutch travellers,

overcrowded trains and places of interest. Once studied, the impact of these events can open up

discussion on the alignment of policy measures between the neighbouring countries. That is why we want

to stress the importance of good travel data. For the current version of the model, we use aggregated

data. To further improve the model and make the findings more precise, we propose to use more detailed

data on the number of people travelling from city to city and for what reason. Additionally, the model can

benefit from including other social groups travelling for different purposes (such as students for studies,

workers for shopping, etc.)
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Annexes
Source code

We store the source code of the city generation algorithm, simulation model and web-based application

on GitHub.com. For the city generation algorithm visit https://github.com/mikhailsirenko, for the

simulation model look at https://github.com/averbraeck/medlabs-heros and for the web-based

application refer to https://github.com/Michsior14/covis.

Simulation model

Entity Agents

The Hague 553667

Zoetermeer 32443

Rijswijk 29916

Leidschendam-Voorburg 29521

Delft 27935

Pijnacker-Nootdorp 22571

Westland 18958

Midden-Delfland 12139

Wassenaar 9981

Germany 500

Belgium 500

Total 738131

Table 4. Number of agents by entity.

Experimental setup

For a complete overview of the default parameters see

https://github.com/averbraeck/medlabs-heros/tree/main/src/main/resources.

Default parameters

Parameter Value

Number of infected people 100

Minimum age of getting infected 0

Maximum age of getting infected 100

©HERoS Consortium PU

52

https://github.com/mikhailsirenko
https://github.com/averbraeck/medlabs-heros
https://github.com/Michsior14/covis
https://github.com/averbraeck/medlabs-heros/tree/main/src/main/resources


Table 5. Default parameters of the coupled simulation model.

Business-as-usual

Parameter Value Entity

Infection rate factor 0.873904964 Zoetermeer

Infection rate factor 0.98115211 Westland

Infection rate factor 0.972391824 Delft

Infection rate factor 0.789487656 Leidschendam-Voorburg

Infection rate factor 0.917706398 Pijnacker-Nootdorp

Infection rate factor 0.912397133 Rijswijk

Infection rate factor 0.66418901 Wassenaar

Infection rate factor 0.895938413 Midden-Delfland

Infection rate 0.00096209 Belgium

Infection rate 0.000220074 Germany

Table 6. Parameters used in the businesses-as-usual scenario.

A highly infected satellite city

Parameter Value Entity

Infection rate factor, base case
scenario

0.91239 Rijswijk

Infection rate factor, mid case
scenario

4.0

Infection rate factor, worst case
scenario

16.0

Table 7. Parameters used in the highly infected satellite city scenario.

A highly infected neighbouring country

Parameter Value Value

Infection rate, base case
scenario

0.0009620898197102 Belgium
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Infection rate 0.0019241796394204

Infection rate, mid case scenario 0.09

Infection rate, worst case
scenario

0.36

Table 8. Parameters used in the highly infected neighbouring country scenario.

Are preparedness indices reflective of pandemic preparedness?

As a continuation of the health care system analysis in task 2.1 a sub-study was conducted in D2.3 on how

the reported cumulative mortality rates, during the spring of 2020 and in the 60 days after the date of a

country's first COVID-19 related death, compared to the expected preparedness rank according to the

existing global preparedness indices (IHR and GHSI) on a country level.

The analysis strives to understand crisis and disaster preparedness and effective response, via the lens of

the ongoing global pandemic and responding to the questions: do the current measures for pandemic

preparedness reflect preparedness adequately, and what does pandemic preparedness mean? We

analysed how the reported cumulative mortality rates, during the spring of 2020 and in the 60 days after

the date of a country's first COVID-19 related death, compared to the expected preparedness rank

according to the existing global preparedness indices (IHR and GHSI) on a country level. We found, at

country level, that the health-related outcomes from the first wave of the pandemic were primarily

negatively correlated with the expected preparedness. We contend that our results indicate a need to

investigate further development and enhancement of the preparedness indices.

Sub-indi
cator

Category Indicator Specific
question/item

GHSI
scoring/scale

Pearson
correlation

P-value

4.6.2a 4. Health
System -
Sufficient &
Robust Health
System To
Treat The Sick
& Protect
Health Workers

Capacity to test
and approve
new medical
countermeasures

Is there a
government
agency
responsible for
approving new
medical
countermeasures
(MCM) for
humans?

Yes = 1

No = 0

−0.463 0.003**

©HERoS Consortium PU

54

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/disaster-preparedness


5.5.3b 5. Compliance
with
International
Standards -
Commitments
To Improving
National

Capacity,
Financing And
Adherence To
Norms

Financing Is there evidence
that the country
has, in the past
three years,
either invested
finances (from
donors or
national budget)
or provided
technical
support either to
• Support other
countries to
improve
capacity to
address
epidemic
threats?

• Improve the
country's
domestic
capacity to
address
epidemic
threats?

Needs to meet at
least one of the
criteria to be
scored a 1 on
this measure.

Yes = 1

No = 0

−0.250 0.119

3.1.1c 3. Rapid
Response -
Rapid
Response To
And Mitigation
Of The Spread
Of An
Epidemic

Emergency
preparedness
and response
planning

If this plan is in
place, does it
include
considerations
for pediatric
and/or other
vulnerable

populations?

Yes = 1

No/no plan in
place = 0

−0.250 0.120
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5.5.2a 5. Compliance
with
International
Standards -
Commitments
To Improving
National

Capacity,
Financing And
Adherence To
Norms

Financing Is there a
publicly
identified
special
emergency
public financing
mechanism and
funds which the
country can
access in the

face of a public
health
emergency (such
as through a
dedicated
national reserve
fund, an

established
agreement with
the World Bank

pandemic
financing
facility/other
multilateral

emergency
funding
mechanism, or
other

pathway
identified
through a public
health or state of
emergency act)?

Yes = 1

No = 0

−0.242 0.133

6.2.3a 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability
To Biological
Threats

Socio-economic
resilience

Poverty
headcount ratio
at $1.90 a day
(2011

PPP) (% of
population)

Yes = 1

No = 0

−0.184 0.255
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2.3.2a 2. Detection &
Reporting -
Early Detection
& Reporting
For Epidemics
Of Potential
International
Concern

Epidemiology
workforce

Is there public
evidence that the
country has at
least 1 trained
field
epidemiologist
per 200,000
people?

Yes = 1

No = 0

−0.180 0.266

2.1.2a 2. Detection &
Reporting -
Early Detection
& Reporting
For Epidemics
Of Potential
International
Concern

Laboratory
systems

Does the
country
participate in a
regional or
international
laboratory
network?

Yes = 1

No = 0

−0.177 0.274

4.5.1a 4. Health
System -
Sufficient &
Robust Health
System To
Treat The Sick
& Protect
Health Workers

Infection control
practices and
availability of
equipment

Has the country
published a
publicly
available plan,
strategy, or
similar
document to
address

personal
protective
equipment
(PPE) supply

issues for both
routine national
use and during a
public health
emergency?

Yes = 1

No = 0

−0.138 0.396

1.2.1c 1. Prevention -
Prevention Of
The Emergence
Or Release Of
Pathogens

Zoonotic disease Is there a
department,
agency, or
similar unit
dedicated to
zoonotic disease
that functions

Yes = 1

No = 0

−0.130 0.424
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across
ministries?

3.6.4a 3. Rapid
Response -
Rapid
Response To
And Mitigation
Of The Spread
Of An
Epidemic

Access to
communications
infrastructure

Percentage point
gap between
males and
females whose
home has access
to the

Internet

Yes = 1

No = 0

−0.122 0.453

Table 9. Ten most negatively correlated Global Health Security index (GHSI) sub-indicator items against

COVID-19 mortality data for 40 countries with highest mortality data in GHSI.

Sub-indi
cator

Category Indicator Specific
question/item

GHSI
scoring/scal
e

Pearson
correlation

P-value

4.3.1c 4. Health
System -
Sufficient &
Robust Health
System To Treat
The Sick &
Protect Health
Workers

Healthcare
access

Out-of-pocket
health
expenditures
per capita,
purchasing
power parity
(PPP; current
international
$)

31.5–2325.7 0.473 0.002**

6.5.1b 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability To
Biological
Threats

Public health
vulnerabilities

Healthcare
Access and
Quality
(HAQ) Index
frontier score

35–96.6 0.459 0.003**

1.2.4a 1. Prevention -
Prevention Of
The Emergence
Or Release Of
Pathogens

Zoonotic
diseases

Number of
veterinarians
per 100,000
people

0–229 0.458 0.003**
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6.5.1a 6. Risk
Environment -
Overall Risk
Environment

And Country
Vulnerability To
Biological
Threats

Public health
vulnerabilities

Total life
expectancy
(years)

62.47–89.4 0.423 0.007**

6.3.1a 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability To
Biological
Threats

Infrastructure
adequacy

What is the
risk that the
road network
will prove
inadequate to
meet needs?

1, 2, 3, 4 0.414 0.008**

6.4.3a 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability To
Biological
Threats

Environmental
risks

What is the
risk that the
economy will
suffer a major
disruption
owing to a
natural
disaster?

1, 2, 3, 4 0.400 0.011*

6.2.2a 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability To
Biological
Threats

Socio-economic
resilience

United
Nations
Development
Programme
(UNDP)
Gender
Inequality
Index score

0.39–0.96 0.400 0.011*

6.1.1a 6. Risk
Environment -
Overall Risk
Environment
And Country
Vulnerability To
Biological
Threats

Political and
security risk

Government
effectiveness
(EIU score)

1, 2, 3, 4 0.385 0.014*
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3.6.1a 6. Rapid
Response -
Rapid Response
To And
Mitigation Of
The Spread Of
An Epidemic

Access to
communications
infrastructure

Percentage of
households
with Internet

31–98 0.373 0.018*

6.5.3a 6. Risk

Environment

- Overall Risk

Environment

And Country

Vulnerability

To Biological

Threats

Public health

vulnerabilities

Domestic

general

government

health

expenditure

per capita

(PPP)

56–8078

Table 10. Ten most positively correlated Global Health Security index (GHSI) sub-indicator items against

COVID-19 mortality data for 40 countries with highest mortality data in GHSI.

We found that the health-related outcomes from the first wave (in the northern hemisphere spring of

2020) were primarily negatively correlated with the expected preparedness measured by the existing

preparedness indices on a country level. Put another way, the countries with better preparedness did not

have better health outcomes in the first wave as measured by the number of COVID-19 deaths. For this

pandemic, national level health preparedness rankings were not an indicator of how well a country

handled the pandemic.

The results have been published in International Journal of Disaster Risk Reduction:

”Hlekiwe Kachali, Ira Haavisto, Riikka-Leena Leskelä, Auri Väljä, Mikko Nuutinen, Are preparedness indices reflective

of pandemic preparedness? A COVID-19 reality check, International Journal of Disaster Risk Reduction, Volume 77,

2022, 103074, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2022.103074.”
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